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Conventional neuroimaging techniques provide information about condition-related
changes of the BOLD (blood-oxygen-level dependent) signal, indicating only where and
when the underlying cognitive processes occur. Recently, with the help of a new
approach called “model-based” functional neuroimaging (fMRI), researchers are able to
visualize changes in the internal variables of a time varying learning process, such as the
reward prediction error or the predicted reward value of a conditional stimulus. However,
despite being extremely beneficial to the imaging community in understanding the neural
correlates of decision variables, a model-based approach to brain imaging data is also
methodologically challenging due to the multicollinearity problem in statistical analysis.
There are multiple sources of multicollinearity in functional neuroimaging including
investigations of closely related variables and/or experimental designs that do not account
for this. The source of multicollinearity discussed in this paper occurs due to correlation
between different subjective variables that are calculated very close in time. Here, we
review methodological approaches to analyzing such data by discussing the special case
of separating the reward prediction error signal from reward outcomes.

Keywords: prediction error, model comparison, dopamine, predicted value, fMRI

INTRODUCTION
Functional neuroimaging studies of reward and punishment
learning have become an important research topic for under-
standing brain regions involved in decision-making and rein-
forcement learning (Montague et al., 2006; Rangel et al., 2008).
One finding of this research is that human learning and decision-
making are guided by subjective decision variables (Rangel and
Hare, 2010; Bartra et al., 2013). Studies have shown that these
subjective decision variables are not always directly observable
by the experimenters and that computational models are needed
to infer them (Corrado and Doya, 2007; O’Doherty et al., 2007;
Furl and Averbeck, 2011; Mars et al., 2012). Furthermore, under-
standing these decision variables not only provides a framework
for neuroscientists to understand where in the brain they may
be calculated or represented, but it can also shed light on the
possible computational mechanisms that guide efficient decision
making (Gläscher and O’Doherty, 2010; Mars et al., 2012). One
such decision variable is the predicted reward value of a con-
ditional stimulus (CS) (i.e., see Gottfried et al., 2003). In order
to calculate the predicted value of a CS, the reward-prediction
error (RPE) associated with it should be known (Montague et al.,
1996; Schultz et al., 1997). The RPE signal indicates how sur-
prising a particular stimulus is after the organism receives the
rewarding outcome associated with it. It originates from Bush and

Mosteller’s learning model (1951) and was later updated by the
Rescorla-Wagner learning rule (1972). In its simplest form, the
Rescorla-Wagner reward prediction error is calculated by the dif-
ference between the actual reward receipt (R) and the predicted
reward value (VCS), where the RPE is represented by the symbol δ,
(δ = R − VCS) (Glimcher, 2011).

In neuroimaging studies that use the Rescorla-Wagner form
of RPE, RPE is calculated when the participants receive reward
feedback (e.g., Pessiglione et al., 2006) that makes it hard
to distinguish from hedonic responses to reward outcomes
(RO). However, in the temporally extended versions of the
RPE signal, such as the temporal-difference learning algo-
rithm (TD), the RPE is calculated during the outcome retrieval
and it shifts back to the presentation of the CS (Niv and
Schoenbaum, 2008) in order to indicate an approximate predic-
tion about the amount of the RO of the CS (e.g., O’Doherty
et al., 2003). In the Rescorla-Wagner learning rule, the RPE
is used to update the expectations of reward predictions
for the next trial and is calculated by the following equa-
tion: VCS, t + 1 = VCS, t + αδ (α indicates the stimulus specific
learning rate).

Numerous electrophysiological studies in animals have
reported that mid-brain dopamine neurons in the ventral
tegmental area and substantia nigra perform computations that
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are similar to RPEs (Schultz et al., 1997; Bayer and Glimcher,
2005). Nevertheless, it has also been found that RPE activity is
not limited to the mid-brain dopaminergic neurons but is also
found in other parts of the brain such as the anterior cingulate
cortex and medial-frontal cortex (Amiez et al., 2005; Matsumoto
et al., 2007). Since the initial publication of Schultz et al. (1997),
numerous brain regions have been identified that code for RPEs;
this has led to different neural circuit models for prediction error
(PE) coding in the brain (this suggests that PE is coded either
locally in the brain or in a distributed fashion; for a review please
refer to Schultz and Dickinson, 2000; Kawato and Samejima,
2007). For example, one early localist interpretation argues that
the calculation of the prediction error requires that the infor-
mation associated with the reward amount and the predicted
value should both be available at the midbrain dopaminergic
synapse in order to calculate a RPE signal (Houk et al., 1995).
Since Houk et al. (1995), many neuroimaging studies have been
carried out in order to identify the neural correlates of predic-
tion error in humans (for a meta-analytic review, see Garrison
et al., 2013). Furthermore, based on the economic theory, alter-
native axiomatic approaches have been developed to identify
which brain regions are actually coding the RPE signal (Rutledge
et al., 2010). The study of Rutledge et al. (2010) showed that
the medial orbitofrontal cortex, striatum, amygdala and poste-
rior cingulate cortex satisfy the necessary and sufficient condition
for all classes of RPE signals. Moreover, many studies have been
conducted to determine the neural correlates of a reward out-
come (RO) and the predicted value (for meta-analytic reviews,
see Kringelbach and Rolls, 2004; Grabenhorst and Rolls, 2011;
Liu et al., 2011; Diekhof et al., 2012; Levy and Glimcher, 2012).
These studies suggest that the medial orbitofrontal cortex and
the striatum are the most likely candidates for brain regions
that process the RPE signal, the predicted value signal, and RO.
However, researchers still disagree where RPEs are coded in the
brain (see Schultz and Dickinson, 2000; Garrison et al., 2013
for a discussion). One reason for this is due to its correlation
with ROs.

In functional neuroimaging, determining what type of infor-
mation is represented in a particular voxel is a challenging
question if multiple highly correlated regressors are introduced
to a general linear model (GLM; Poldrack et al., 2011). This
problem of multicollinearity is not only related to poor esti-
mation of regressors’ parameter estimates, but it can also give
rise to anatomical misattribution of functions if it is not taken
into account (Andrade et al., 1999). In the case of RPE and
RO, multicollinearity between regressors arises because both
of these variables are calculated at the same time (during
the time of the unconditional stimulus). In order to solve
the problem of inefficient parameter estimation due to multi-
collinearity, many suggestions have been made by researchers
such as efficient experimental design (Monti, 2011). The prob-
lem of misleading conclusions due to multicollinearity can
be accounted for by rather complicated Bayesian model com-
parison approaches (Stephan et al., 2009). Here, we sum-
marize an alternative and relatively simpler approach that is
related to the orthogonalization of regressors within a GLM
analysis.

SOLUTIONS FOR MODEL COMPARISON
Recently, using two different decision-making tasks, Rohe et al.
(2012) tested where predicted values, RPE and RO are coded
in the brain. As mentioned above, this is a challenging ques-
tion because there is a rich source of contradictory observa-
tions; moreover, a methodological challenge arises from the
fact that RPE and RO are inherently correlated (i.e., a reward
results in a positive RPE and a non-reward results in a negative
RPE). Consequentially, the parametric regressors, which encode
the models’ predictions, are highly correlated if they are both
included into the general linear model. In their paper, Rohe et al.
(2012) introduced three approaches to compare which of the
two competing models’ signals (RPE vs. RO) is a better descrip-
tion of a regional BOLD signal. A model comparison seeks to
select the model that is better able to explain the variance of
a dependent variable (e.g., a BOLD signal) while having the
lowest complexity (i.e., number of free parameters) (Maxwell
and Delaney, 2004). The comparison is not straightforward if
the model predictions are correlated as in the case of RPE and
RO. Due to the correlation, part of the variance of the BOLD
signal can be equally explained by both models. However, a
model comparison of correlated models with the same complex-
ity can be implemented in three equivalent ways within a GLM
approach as illustrated by the use of Venn diagrams (Figure 1).
First, the model comparison can be implemented by comparing
the parameter estimates assessing the BOLD variance, which is
uniquely explained by the orthogonalized RO and RPE regressors
(Figures 1B, 2F). Orthogonalization refers to the computational
procedure that renders one regressor orthogonal to a second
regressor (Rodgers et al., 1984). The non-orthogonalized regres-
sor and the orthogonalized regressor occupy the same vector
subspace as before orthogonalization, but the parameter estimates
of the orthogonalized regressor now measure the BOLD vari-
ance which is uniquely explained by this regressor. To obtain
parameter estimates of the orthogonalized RO and RPE regres-
sors, two separate full GLMs (Figure 1C), each containing both
model regressors but with reversed orthogonalization, are fitted
to the data (Note that it is important to z standardize regres-
sors before fitting the two GLMs because otherwise the size of
parameter estimates is not only affected by the variance they can
explain but also by different scaling of the models’ regressors).
If the parameter estimates of the orthogonalized regressors are
statistically compared, the model that explains relatively more
unique BOLD variance can be selected (i.e., it wins the com-
parison). Second, the model comparison can be implemented by
comparing the parameter estimates of the non-orthogonalized
regressors measuring the variance that is commonly explained by
both regressors in addition to the variance uniquely explained by
the regressor itself (Figures 1B, 2G). By subtraction, one effec-
tively eliminates the variance which is commonly explained by
both models. Consequently, the comparison determines which of
the competing models has larger uniquely explained variance as
in the previous approach. Third, the model comparison can be
implemented by comparing the residual BOLD variance, which
cannot be explained by the RO or the RPE regressor (Figures 1B,
2H). The better model explains more BOLD variance than the
worse model. Thus, the residual variance of the BOLD signal
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FIGURE 1 | Illustration of the three model comparison approaches.

(A) The areas of three overlapping circles correspond to unique and common
variance of the dependent variable (BOLD response) and the two candidate
regressors (RO vs. RPE). In this example, the RO model is a better model of
the region’s BOLD response than the RPE model. This can be inferred from
three equivalent comparisons. (B) First, the comparison of BOLD variances
uniquely explained by the orthogonalized regressors shows that the RO
model explains more BOLD variance than the RPE model. Second, the
comparison of the BOLD variances uniquely and commonly explained by the

non-orthogonalized regressors leads to the same conclusion. Third, the
comparison of the residual BOLD variances of the reduced GLMs comprising
only one of the competing regressors shows that the inclusion of the RPE
regressor leaves more residual BOLD variance than if RO is included. Thus,
RO wins the model comparison also in this approach. (C) Four GLMs are
fitted to the BOLD response. Full GLMs contain both regressors but with
reversed orthogonalization. Reduced GLMs only comprise one of the
competing regressors. Regressors used for the three model comparison
approaches in (B) are color-coded.

is smaller for the winning than for the losing model. For this
approach, two separate reduced GLMs are fitted, each compris-
ing only one of the candidate models’ regressors (Figure 1C). In
conclusion, the details of the study determine which of the three
equivalent approaches should be adopted. The third approach
is the most general because it can, in principle, handle different
model complexities (e.g., using Bayesian information criterion
trading of model fit vs. model complexity). However, the first
approach might be most feasible because it can be easily imple-
mented in standard packages like statistical parametric map-
ping (SPM) (http://www.fil.ion.ucl.ac.uk/spm) using parametric
regressors and SPM’s inherent orthogonalization.

To further illustrate the idea of these model comparisons, we
simulated a scenario in which 80% of the neurons represent an
RO signal and 20% represent an RPE signal (Region A) or vice
versa (Region B). In such a scenario, it is hard to differentiate the
role of these regions and conclude that Region A is coding RO and
Region B is coding RPE because the BOLD activations in those
two regions will be highly correlated (in addition to the intrinsic
correlation between RPE and RO signals).

In order to demonstrate how the three approaches to model
comparison yield the appropriate model, we ran a computer sim-
ulation using Matlab (www.mathworks.com) and SPM software.
The results of the simulation can be seen from the illustrative
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FIGURE 2 | (A,B) A simulated BOLD signal was created for a total of 200 s
for two brain regions representing mainly the RPE and the RO, respectively.
Zero second duration events were used. (C) Correlation between the RO and
the RPE regressor if there is no orthogonalization between the regressors
(r = 0.89). (D) The RPE regressor is orthogonalized based on the RO
regressor (r = 0). (E) The RO regressor is orthogonalized based on the RPE
regressor (r = 0). (F) Parameter estimates of the non-orthogonalized

regressors in the two brain regions from the two full GLMs show that RO
explains more unique BOLD variance in region A and RPE explains more
unique BOLD variance in region B. (G) Parameter estimates of the
orthogonalized regressors from the two full GLMs lead to the same
conclusion. (H) A model comparison via log residual variance (smaller =
better) from reduced GLMs shows that the RO regressor provides a better fit
of region A and the RPE regressor provides a better fit of region B.

example in Figure 2. We initially generated a simulated BOLD
(blood oxygenated level dependent signal) signal for two brain
regions (Region A and Region B), which carried both the RO
and the RPE signals (Figures 2A,B). In the simulated BOLD sig-
nal, the contribution of RO and RPE to the overall activity in
Region A (RO sensitive region) was weighted as 80% RO and 20%

RPE, whereas Region B (RPE sensitive region) was weighted as
20% RO and 80% RPE (plus Gaussian noise). The RPE regres-
sor was created using a simple Rescorla-Wagner learning rule as
shown in the introductory equations (α = 0.5). In modeling the
simulated BOLD responses, two separate GLMs (full GLM1 and
GLM2) were constructed which incorporated the RPE and the

Frontiers in Neuroscience | Brain Imaging Methods July 2013 | Volume 7 | Article 116 | 4

http://www.frontiersin.org/Brain_Imaging_Methods
http://www.frontiersin.org/Brain_Imaging_Methods
http://www.frontiersin.org/Brain_Imaging_Methods/archive


Erdeniz et al. A simple solution for model comparison

RO regressor in their design matrices (Figure 1C). Thus, GLM1
and 2 were the same except that the order of orthogonalization
of the RPE and the RO regressors was reversed. Regressors were
created by convolving their stimulus function with a haemody-
namic response function. The stimulus function for RO was made
up of the vector [1, 0, 0, 1, 1, 1, 0] (ones indicate reward deliv-
ery and zeros indicate non-delivery), which was introduced at
stimulus onset times. Similarly, the stimulus function for RPE
was made out of real numbers indicating the size of RPE as [1,
−0.5, −0.25, 0.87, 0.43, 0.21, −0.89]. Before orthogonalization,
the RO and RPE regressors were highly correlated (Figure 2C).
In the first scenario, the RPE regressor was orthogonalized to
the RO regressor (full GLM 1; Figure 2D) and the RO regressor
was orthogonalized to the RPE regressor (full GLM 2; Figure 2E).
Orthogonalization effectively reduced the correlation of regres-
sors (r = 0). We then compared the parameter estimates of the
orthogonalized regressors for the two brain regions (Figure 2F).
The RO regressor showed higher “activation” (i.e., explained
more unique BOLD variance) compared to the RPE regressor
in brain Region A. Conversely, the RPE regressor showed higher
activation in brain Region B. This showed that comparison of
parameter estimates of orthogonalized regressors correctly iden-
tified the signal underlying a region’s BOLD response. In the
second scenario, we compared the parameter estimates of the
non-orthogonalized regressors (Figure 2G). This approach led to
significant activation compared to baseline for both models in
both regions. This illustrates that if only one of the competing
models’ signals is investigated in isolation (i.e., only compared to
baseline), this could result in a misattribution of function (e.g.,
we could falsely conclude that both region A and B represent RO).
However, when comparing parameter estimates of the competing
models, we again found that RO was a better model of region A
while RPE was a better model of region B. In the final scenario,
we used the same two GLMs but removed the RPE regressor from
GLM 1 and removed the RO regressor from GLM 2 (Figures 1C,
2H). Next, we compared the log residual variances in order to
determine which of these reduced GLMs has a better overall fit
(i.e., has less residual BOLD variance). In case of a comparison
of equally complex models, log residual variance can be taken to
compare models because model comparison indices like Akaike
or Bayesian information criterion (AIC/BIC) are a linear func-
tion of log residual variance in this case (Stephan et al., 2009).

Thus, one should choose the GLM with the lowest log residual
variance corresponding to minimum AIC/BIC (Pitt and Myung,
2002). Hence, we again retrieved the “ground truth” that RO is a
better model of region A while RPE is a better model of region B.

Rohe et al. (2012) showed that both RPE and RO activated
striatum, midbrain and the medial orbito-frontal cortex when the
activation from the non-orthogonalized regressors was compared
to a zero baseline. However, when the authors compared the RPE
and the RO model, they showed that RO was a better model of
activity in MOFC than RPE while RPE was a better model of activ-
ity in striatum and midbrain. This does not necessarily mean that
these regions independently code these variables. However, they
might be sharing information in order to calculate more com-
plex variables (e.g., reward information calculated in the medial
frontal cortex might be used by the ventral striatum to further
calculate prediction errors).

SUMMARY
Rohe et al. (2012) provided evidence that RO is a better model for
BOLD responses in MOFC while RPE is a better model for BOLD
responses in the striatum and midbrain. However, all of these
regions seemed to respond to RO and RPE if their correlation
was not taken into account. Recently, more studies have begun to
apply similar analysis techniques (e.g., Bornstein and Daw, 2012)
and this method can be applicable to other areas of cognitive neu-
roscience such as numerical cognition where multicolinearity is a
problem in identifying the neural correlates of parametric regres-
sors (Wood et al., 2008). Consequently, Rohe et al. (2012) have
provided a simple and elegant solution to the model comparison
issue that can be applied to many experiments. Applying a com-
parison technique will eventually lead to the correct selection in
the sense of a “ground truth” model. Finally, it is important to
note that although this approach provides a practical solution for
model comparison, there should be prior knowledge to explain
why one of the regressors can explain the shared variance better
than the other.
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